Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 815: 151976, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843760

RESUMO

PM2.5 atmospheric samples were regularly collected between January 2013 and March 2015 at a central location of Eastern Mediterranean (Island of Crete) during African dust events (DES) and periods of absence of such episodes as controls (CS). The elemental composition and microbiome DES and CS were thoroughly investigated. Fifty-six major and trace elements were determined by inductively coupled plasma-mass spectrometry. Relative mass abundances (RMA) of major crustal elements and lanthanoids were higher in DES than in CS. Conversely in CS, RMAs were higher for most anthropogenic transition metals. Lanthanum-to-other lanthanoids concentration ratios for DES approached the corresponding reference values for continental crust and several African dust source regions, while in CS they exceeded these values. USEPA's UNMIX receptor model, applied in all PM2.5 samples, established that African dust is the dominant contributing source (by 80%) followed by road dust/fuel oil emissions (17%) in the receptor area. Potential source contribution function (PSCF) identified dust hotspots in Tunisia, Libya and Egypt. The application of 16S rRNA gene amplicon sequencing revealed high variation of bacterial composition and diversity between DES and CS samples. Proteobacteria, Actinobacteria and Bacteroides were the most dominant in both DES and CS samples, representing ~88% of the total bacterial diversity. Cutibacterium, Tumebacillus and Sphingomonas dominated the CS samples, while Rhizobium and Brevundimonas were the most prevalent genera in DES. Mutual exclusion/co-occurrence network analysis indicated that Sphingomonas and Chryseobacterium exhibited the highest degrees of mutual exclusion in CS, while in DES the corresponding species were Brevundimonas, Delftia, Rubellimicrobium, Flavobacterium, Blastococcus, and Pseudarthrobacter. Some of these microorganisms are emerging global opportunistic pathogens and an increase in human exposure to them as a result of environmental changes, is inevitable.


Assuntos
Poluentes Atmosféricos , Poeira , Poluentes Atmosféricos/análise , Atmosfera , Poeira/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , RNA Ribossômico 16S
2.
Microbiol Resour Announc ; 8(45)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699761

RESUMO

Bacillus cereus is a Gram-positive, widely distributed bacterium that has a high level of metabolite production. Here, we report the draft genome sequence of a B. cereus strain exhibiting high and diverse hydrolytic potential that was isolated from glacial water samples from Svalbard, Norway.

3.
Front Microbiol ; 9: 1412, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008705

RESUMO

Pesticides are intentionally applied to agricultural fields for crop protection. They can harm non-target organisms such as soil microorganisms involved in important ecosystem functions with impacts at the global scale. Within the frame of the pesticide registration process, the ecotoxicological impact of pesticides on soil microorganisms is still based on carbon and nitrogen mineralization tests, despite the availability of more extensive approaches analyzing the abundance, activity or diversity of soil microorganisms. In this study, we used a high-density DNA microarray (PhyloChip) and 16S rDNA amplicon next-generation sequencing (NGS) to analyze the impact of the organophosphate insecticide chlorpyrifos (CHL), the phenyl-urea herbicide isoproturon (IPU), or the triazole fungicide tebuconazole (TCZ) on the diversity and composition of the soil bacterial community. To our knowledge, it is the first time that the combination of these approaches are applied to assess the impact of these three pesticides in a lab-to-field experimental design. The PhyloChip analysis revealed that although no significant changes in the composition of the bacterial community were observed in soil microcosms exposed to the pesticides, significant differences in detected operational taxonomic units (OTUs) were observed in the field experiment between pesticide treatments and control for all three tested pesticides after 70 days of exposure. NGS revealed that the bacterial diversity and composition varied over time. This trend was more marked in the microcosm than in the field study. Only slight but significant transient effects of CHL or TCZ were observed in the microcosm and the field study, respectively. IPU was not found to significantly modify the soil bacterial diversity or composition. Our results are in accordance with conclusions of the Environmental Food Safety Authority (EFSA), which concluded that these three pesticides may have a low risk toward soil microorganisms.

4.
Bioresour Technol ; 238: 48-56, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28432949

RESUMO

A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH4+-N. Exceptionally high ß-glucosidase activities (6700-10,100Ug-1) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced ß-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater.


Assuntos
Reatores Biológicos , Poluentes Químicos da Água , beta-Glucosidase , Membranas Artificiais , Polímeros , Águas Residuárias
5.
Microbes Environ ; 31(4): 401-409, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27725345

RESUMO

Two thirds of Svalbard archipelago islands in the High Arctic are permanently covered with glacial ice and snow. Polar bacterial communities in the southern part of Svalbard were characterized using an amplicon sequencing approach. A total of 52,928 pyrosequencing reads were analyzed in order to reveal bacterial community structures in stream and lake surface water samples from the Fuglebekken and Revvatnet basins of southern Svalbard. Depending on the samples examined, bacterial communities at a higher taxonomic level mainly consisted either of Bacteroidetes, Betaproteobacteria, and Microgenomates (OP11) or Planctomycetes, Betaproteobacteria, and Bacteroidetes members, whereas a population of Microgenomates was prominent in 2 samples. At the lower taxonomic level, bacterial communities mostly comprised Microgenomates, Comamonadaceae, Flavobacteriaceae, Legionellales, SM2F11, Parcubacteria (OD1), and TM7 members at different proportions in each sample. The abundance of OTUs shared in common among samples was greater than 70%, with the exception of samples in which the proliferation of Planctomycetaceae, Phycisphaeraceae, and Candidatus Methylacidiphilum spp. lowered their relative abundance. A multi-variable analysis indicated that As, Pb, and Sb were the main environmental factors influencing bacterial profiles. We concluded that the bacterial communities in the polar aquatic ecosystems examined mainly consisted of freshwater and marine microorganisms involved in detritus mineralization, with a high proportion of zooplankton-associated taxa also being identified.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Água Doce/microbiologia , Regiões Árticas , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Svalbard
6.
Sci Total Environ ; 569-570: 86-96, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341109

RESUMO

Assessment of dissipation constitutes an integral part of pesticides risk assessment since it provides an estimate of the level and the duration of exposure of the terrestrial ecosystem to pesticides. Within the frame of an overall assessment of the soil microbial toxicity of pesticides, we investigated the dissipation of a range of dose rates of three model pesticides, isoproturon (IPU), tebuconazole (TCZ), and chlorpyrifos (CHL), and the formation and dissipation of their main transformation products following a tiered lab-to-field approach. The adsorption of pesticides and their transformation products was also determined. IPU was the least persistent pesticide showing a dose-dependent increase in its persistence in both laboratory and field studies. CHL dissipation showed a dose-dependent increase under laboratory conditions and an exact opposite trend in the field. TCZ was the most persistent pesticide under lab conditions showing a dose-dependent decrease in its dissipation, whereas in the field TCZ exhibited a biphasic dissipation pattern with extrapolated DT90s ranging from 198 to 603.4days in the ×1 and ×2 dose rates, respectively. IPU was demethylated to mono- (MD-IPU) and di-desmethyl-isoproturon (DD-IPU) which dissipated following a similar pattern with the parent compound. CHL was hydrolyzed to 3,5,6-trichloro-2-pyridinol (TCP) which dissipated showing a reverse dose-dependent pattern compared to CHL. Pesticides adsorption affinity increased in the order IPU

Assuntos
Clorpirifos/metabolismo , Fungicidas Industriais/metabolismo , Herbicidas/metabolismo , Inseticidas/metabolismo , Compostos de Fenilureia/metabolismo , Poluentes do Solo/metabolismo , Triazóis/metabolismo , Biodegradação Ambiental , Monitoramento Ambiental
7.
Environ Pollut ; 208(Pt B): 537-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26552540

RESUMO

Pesticides generate transformation products (TPs) when they are released into the environment. These TPs may be of ecotoxicological importance. Past studies have demonstrated how difficult it is to predict the occurrence of pesticide TPs and their environmental risk. The monitoring approaches mostly used in current regulatory frameworks target only known ecotoxicologically relevant TPs. Here, we present a novel combined approach which identifies and categorizes known and unknown pesticide TPs in soil by combining suspect screening time-of-flight mass spectrometry with in silico molecular typology. We used an empirical and theoretical pesticide TP library for compound identification by both non-target and target time-of-flight (tandem) mass spectrometry, followed by structural proposition through a molecular structure correlation program. In silico molecular typology was then used to group TPs according to common molecular descriptors and to indirectly elucidate their environmental parameters by analogy to known pesticide compounds with similar molecular descriptors. This approach was evaluated via the identification of TPs of the triazole fungicide tebuconazole occurring in soil during a field dissipation study. Overall, 22 empirical and 12 yet unknown TPs were detected, and categorized into three groups with defined environmental properties. This approach combining suspect screening time-of-flight mass spectrometry with molecular typology could be extended to other organic pollutants and used to rationalize the choice of TPs to be investigated towards a more comprehensive environmental risk assessment scheme.


Assuntos
Fungicidas Industriais/análise , Poluentes do Solo/análise , Triazóis/análise , Biotransformação , Monitoramento Ambiental , Fungicidas Industriais/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Espectrometria de Massas em Tandem , Triazóis/metabolismo
8.
Environ Sci Pollut Res Int ; 23(4): 3481-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490927

RESUMO

In the present study, the field dissipation and transport of quizalofop-p-ethyl by water and sediment runoff were investigated in sunflower experimental cultivation under Mediterranean conditions. The cultivation was carried out in silty clay soil plots with two different slopes of 1 and 5%. The soil dissipation rate of quizalofop-p-ethyl was fast and can be described by both single first-order (SFO) and Gustafson and Holden (first-order multi compartment (FOMC)) kinetics. The half-life of quizalofop-p-ethyl ranged from 0.55 to 0.68 days and from 0.45 to 0.71 days when SFO and FOMC kinetics were applied, respectively. No herbicide residues were detected below the 10-cm soil layer. A single detection of quizalofop-p-ethyl was observed in runoff water (3 days after application (DAA)) at relatively low concentrations (from 1.70 to 2.04 µg L(-1)). In sediment, it was detected in the samplings of 3 and 25 DAA at concentrations that never exceeded 0.126 µg g(-1). The estimated total losses of quizalofop-p-ethyl as percentage of the initial applied active ingredient were low both in water and sediment (less than of 0.021 and 0.005%, respectively). Quizalofop-p-ethyl residues were detectable for 18 DAA in the stems and leaves of the plants and 6 DAA in the root system. No herbicide residues were detected in inflorescences and seeds of sunflower plants. Experimental data showed minimal risk for the contamination of soil and adjacent water bodies.


Assuntos
Helianthus , Herbicidas/análise , Resíduos de Praguicidas/análise , Propionatos/análise , Quinoxalinas/análise , Poluentes do Solo/análise , Flores/química , Meia-Vida , Herbicidas/química , Resíduos de Praguicidas/química , Folhas de Planta/química , Caules de Planta/química , Propionatos/química , Quinoxalinas/química , Sementes/química , Solo/química , Poluentes do Solo/química , Água/química
9.
Biomed Res Int ; 2013: 958719, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260747

RESUMO

Human life and activity depends on microorganisms, as they are responsible for providing basic elements of life. Although microbes have such a key role in sustaining basic functions for all living organisms, very little is known about their biology since only a small fraction (average 1%) can be cultured under laboratory conditions. This is even more evident when considering that >88% of all bacterial isolates belong to four bacterial phyla, the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Advanced technologies, developed in the last years, promise to revolutionise the way that we characterize, identify, and study microbial communities. In this review, we present the most advanced tools that microbial ecologists can use for the study of microbial communities. Innovative microbial ecological DNA microarrays such as PhyloChip and GeoChip that have been developed for investigating the composition and function of microbial communities are presented, along with an overview of the next generation sequencing technologies. Finally, the Single Cell Genomics approach, which can be used for obtaining genomes from uncultured phyla, is outlined. This tool enables the amplification and sequencing of DNA from single cells obtained directly from environmental samples and is promising to revolutionise microbiology.


Assuntos
Microbiota/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ecologia/métodos , Genes Bacterianos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Consórcios Microbianos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...